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Abstract:
Background:
Under normal conditions, the heart obtains ATP through the oxidation of fatty acids, glucose, and ketones. While fatty acids are the main source of
energy in the heart, under certain conditions, the main source of energy shifts to glucose where pyruvate converts into lactate, to meet the energy
demand. The Warburg effect is the energy shift from oxidative phosphorylation to glycolysis in the presence of oxygen. This effect is observed in
tumors as well as in diseases, including cardiovascular diseases. If glycolysis is more dominant than glucose oxidation, the two pathways uncouple,
contributing to the severity of the heart condition. Recently, several studies have documented changes in metabolism in several cardiovascular
diseases; however, the specific mechanisms remain unclear.

Methods:
This literature review was conducted by an electronic database of Pub Med, Google Scholar, and Scopus published until 2020. Relevant papers are
selected based on inclusion and exclusion criteria.

Results:
A total of 162 potentially relevant articles after the title and abstract screening were screened for full-text. Finally, 135 papers were included for the
review article.

Discussion:
This review discusses the effects of alterations in glucose metabolism, particularly the Warburg effect, on cardiovascular diseases, including heart
failure, atrial fibrillation, and cardiac hypertrophy.

Conclusion:
Reversing the Warburg effect could become a potential treatment option for cardiovascular diseases.
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1. INTRODUCTION
The  heart  pumps  blood  throughout  the  body  via  the

circulatory  system  [1].  This  process  requires  energy  intake
from carbohydrates, lipids, and proteins. Cardiomyocytes are
heart  muscle  cells  that  can  convert  glucose  or  ketone  bodies
into  mechanical  energy  [2].  While  cardiomyocytes
predominantly  use  fatty  acids  (FAs)  as  their  energy  source,
glucose  provides  approximately  25%  of  the  total  energy
required by the heart [3, 4]. This is different from other cells
where almost 70% of glucose is used as  the  energy source via
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oxidative phosphorylation; the rest is obtained via glycolysis.
In  the  human  heart,  approximately  60-70%  of  the  ATP
produced  in  the  mitochondria  is  used  as  an  energy  source,
whereas  the  remainder  is  used  for  calcium  homeostasis,  ion
pumping into the sarcoplasmic reticulum via calcium ATPase,
and cell death signaling [5]. The requirement for ATP varies
depending on the cell  type,  cellular condition,  growth status,
and microenvironment [6].

In  conditions  of  impaired  myocardial  energy,  such  as
cardiac hypertrophy, a major metabolic shift occurs from FA
oxidation to glucose utilization, affecting glucose uptake and
glycolysis  rate  [7].  This  is  accompanied  by  a  decrease  in
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cardiac mitochondrial oxidative metabolism and an increase in
glycolysis  (pyruvate  conversion into lactate)  [8].  The energy
produced via  mitochondrial  glucose oxidation is greater than
that  produced  via  glycolysis  [9,  10].  However,  cardiac
hypertrophy  and  Heart  Failure  (HF)  rat  models  decrease
myocardial glucose oxidation. Several studies have shown that
changes  in  energy  metabolism  in  the  heart  increase
cardiovascular disease severity, including cardiac hypertrophy
and HF [11 - 13].

In HF, glucose metabolism increases glucose uptake and
glycolysis, ultimately leading to uncoupling of glycolysis and
glucose oxidation. This may also contribute to the development
of HF by increasing cardiac hypertrophy [14]. In proliferating
cells,  such  as  cancer  cells,  uncoupling  of  glycolysis  and
glucose  oxidation  occurs,  which  plays  an  important  role  in
promoting cell growth [6, 15]. In 1920, Otto Warburg reported
an increase in glycolysis and lactate production in cancer cells
compared with normal cells,  despite the presence of oxygen.
This  is  known  as  the  “Warburg  effect”  [16].  Although
glycolysis only produces two ATP molecules compared with
oxidative phosphorylation, which produces 36 ATP molecules,
glycolysis  is  a  relatively  quick  process  [17],  and  the  total
amount of ATP produced by glycolysis is higher than that by
oxidative phosphorylation in the same amount of time [18, 19].
This  “Warburg”  phenomenon  may  also  occur  in  other
conditions,  such  as  cardiac  hypertrophy,  which  can,  in  turn,
result in HF because increased pyruvate dehydrogenase kinase
(PDK)  activity  is  observed,  suggesting  an  increased  rate  of
glycolysis [20, 21].

Recent studies have proposed the existence of the Warburg
effect in cardiovascular diseases. The metabolites produced by
glycolysis  play  an  important  role  in  regulating  extracellular
matrix formation, cell proliferation, apoptosis, and autophagy
[22].  In  addition,  glycolytic  enzymes  are  found  in  many
diseases, including pulmonary fibrosis, hypertension, HF, atrial
fibrillation (AF), and cardiac hypertrophy [23 - 25]. The next
section focuses on the metabolic shift involved in the signaling
pathways and the Warburg effect in cardiovascular disease, and
discusses their potential roles in cardiovascular disease therapy.

2. MATERIALS AND METHODS

Our  aim  was  to  review  the  Warburg  effect  in
cardiovascular  diseases  and  its  molecular  interactions  as
targeted  therapy.  We  conducted  a  literature  search  using
PubMed  and  Google  Scholar  for  articles  published  up  until
2020.  The  keywords  used  were:  “cardiovascular  disease”  or
“cardiac hypertrophy” or “heart failure” or “failing heart” and
“Warburg  effect,”  “heart  metabolism”  or  “heart  failure
metabolism”  or  “cardiac  hypertrophy  metabolism”  or  “atrial
fibrillation  metabolism,”  and  “heart  failure  treatment”  or
“cardiac  hypertrophy  treatment”  or  “atrial  fibrillation
treatment.”  The  inclusion  criteria  were  articles  published  up
until  2020;  those  focusing  on  the  Warburg  effect  in
cardiovascular  disease;  and  those  regarding  metabolism  and
treatment  in  cardiac  hypertrophy,  heart  failure,  and  AF  that
were related to the mechanisms of the Warburg effect.

3. RESULTS AND DISCUSSION

The  initial  search  found  388  article  sources.  After
duplicates were removed, 351 records remained. A further 184
records relevant to the inclusion criteria were articles published
up  until  2020;  those  focusing  on  the  Warburg  effect  in
cardiovascular  disease  and  those  regarding  metabolism  and
treatment  in  cardiac  hypertrophy,  heart  failure,  and  AF  that
were related to the mechanisms of the Warburg effect. A total
of 162 potentially relevant articles after the title and abstract
screening were screened for full-text. Finally, 135 papers were
included for the review article.

3.1. Energy Metabolism in Cardiomyocytes

The adult heart pumping 10 tons of blood a day requires
approximately  6  kg  of  ATP.  The  heart  obtains  energy  from
various  metabolites,  including  glucose,  FAs,  lactate,  and
ketones [26]. Under normal heart conditions, >95% of the ATP
is produced via oxidative phosphorylation; the rest is obtained
via glycolysis. Approximately 50-70% of the ATP is produced
via the oxidation of free FAs [27, 28].

The transport of FAs from the plasma to cardiomyocytes is
facilitated  by  fatty  acid  translocase  (FAT/CD36),  fatty  acid
transport protein, plasma membrane fatty acid-binding protein
(FABPpm), and heart-type fatty acid-binding protein [29]. FAs
are esterified to fatty acyl-CoA, which enters the mitochondrial
membrane with the help of carnitine palmitoyltransferase I and
II (CPT I and II). Fatty acyl-CoA is converted to acetyl-CoA,
which  then  enters  the  tricarboxylic  acid  (TCA)  cycle  to
produce nicotinamide adenine dinucleotide (NADH) and flavin
adenine dinucleotide (FADH2). These cofactors are used in the
electron  transport  chain  to  produce  ATP [30].  Malonyl-CoA
negatively regulates CPT I activity and is formed via  acetyl-
CoA  carboxylase  (ACC)  and  degraded  by  malonyl-CoA
decarboxylase.  AMP-activated  protein  kinase  (AMPK)
phosphorylates ACC, which inhibits  malonyl-CoA formation
and increases FA oxidation. Under normal heart conditions, FA
oxidation,  esterification,  and  uptake  are  activated  by
peroxisome  proliferator-activated  receptor  coactivator-1α
(PGC1α),  which stimulates peroxisome proliferator-activated
receptor α (PPARα). PPARα can modify glucose oxidation by
inhibiting  pyruvate  dehydrogenase  (PDH)  via  pyruvate
dehydrogenase  kinase  4  (PDK4)  [31].  PDK  is  activated  by
NADH and acetyl-CoA, which are produced via FA oxidation,
and directly inhibits PDH. PDK is inhibited by pyruvate and
reduced  the  acetyl-CoA/free  CoA  and  NADH/NAD+  ratios
[32].

The main sources of glucose used by the heart are via the
uptake of exogenously obtained glucose and glycogen stored in
the liver. Glycolysis plays a critical role in cell metabolism and
produces pyruvate, NADH, and ATP. Pyruvate is converted to
lactate by lactate dehydrogenase (LDH) and mostly undergoes
mitochondrial  glucose  oxidation  [33].  Glucose  from  the
circulation  is  transported  to  cells  via  glucose  transporters,
including GLUT1 and GLUT4. In the fetal heart, GLUT1 is the
major glucose transporter, and its level increases in response to
myocardial  stress  or  injury.  In  contrast,  GLUT4  is  the
predominant isoform in the adult heart and plays a role in basal
myocardial  glucose  uptake  [34].  The  deletion  of  GLUT4  in
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mice  hearts  leads  to  metabolic  adaptations  [35].  GLUT  4-
knockout  mice  (G4H−/−)  show  changes  in  glycolysis  as  a
defense mechanism against ischemic injury [36]. After being
absorbed  in  the  intestine,  glucose  is  phosphorylated  to  form
glucose-6-phosphate  (G6P),  which  then  enters  the  metabolic
pathway. In the mitochondria,  pyruvate is  decarboxylated by
pyruvate dehydrogenase to form acetyl-CoA, which then enters
the  TCA  cycle  to  produce  NADH  and  FADH2.  Pyruvate
oxidation is regulated by PDH. ATP plays an important role in
calcium  absorption  in  the  sarcoplasm  and  relaxation  during
diastole  [37].  Glucose  is  catalyzed  by  glycolysis  and
intermediate  glycolysis.  Glucose  is  converted  to  G6P  by
hexokinase  (HK).  G6P  then  enters  the  pentose  phosphate
pathway (PPP) [38]. PPP produces NADPH, which maintains
levels of reduced glutathione and ribulose 5-phosphate used for
nucleotide biosynthesis or for the generation of intermediates
for  glycolysis  [39,  40].  The  polyol  pathway  is  another
glycolytic pathway in which glucose is converted to sorbitol by
aldose reductase (AR). Sorbitol dehydrogenase then oxidizes
sorbitol to fructose and advanced glycation end-products [41].
A study has reported that AR activity increased in the heart and
kidneys  of  a  hyperglycemic  mouse  model  [42].  The
hexosamine biosynthetic pathway generates the end products
hyaluronan,  glycosylphosphatidylinositol  anchor,  glycolipid,
proteoglycan, N-glycan, and O-linked β-N-acetylglucosamine
(O-GlcNAc),  which are derived from uridine diphosphate N-
acetylglucosamine [33]. In cardiac hypertrophy, inhibition of
O-GlcNAc can reduce the progression of the development of
hypertrophy [43, 44].

Ketone  bodies,  such  as  acetoacetate  and  β-
hydroxybutyrate,  are  energy  sources  produced  via  FA  β-
oxidation in the liver [45]. Ketones are oxidized in the heart,
brain,  and  skeletal  muscle  [30].  During  terminal  oxidation,
ketones  are  converted  back  to  acetyl-CoA  in  a  reaction
catalyzed  by  succinyl-CoA-3-oxoacid-CoA  transferase,  β-
hydroxybutyrate  dehydrogenase  1,  and  acetyl-CoA
acetyltransferase 1-or through the lipogenic pathway via fatty
acid  synthase  [46].  The  heart  uses  ketones  to  maintain
myocardial function in HF. In HF, the decrease in FA oxidation
makes ketone bodies an efficient fuel for ATP production [47]
(Fig. 1).

3.2. Warburg Effect in Cardiovascular Diseases

Under normal heart conditions, FAs are the main source of
ATP  production.  In  contrast,  under  various  pathological
conditions,  including  cardiac  hypertrophy,  there  is  a  shift  in
energy  metabolism  from  mitochondrial  oxidative
phosphorylation  and  the  TCA  cycle  to  glycolysis  [48].  The
mass  changes  in  cardiac  hypertrophy  are  associated  with
metabolic  changes,  resulting  in  switching  to  more  ATP
production  from  glucose  than  from  FAs.  Glycolysis  is  a
biochemical process that converts glucose to pyruvate and then
to  lactate  and  CO2  to  produce  ATP.  Carbon  atoms  obtained
from glucose are either derived exogenously or endogenously

by  glycogen  breakdown  [49].  The  change  in  the  rates  of
glycolysis  and  oxidative  phosphorylation  results  in  the
uncoupling  of  glycolysis  and  glucose  oxidation,  which
interferes with cardiac function [8]. In HF, there is an increase
in  glycolysis  with  or  without  a  decrease  in  mitochondrial
oxidation [20, 50]. Impaired myocardial energy metabolism in
cardiac  hypertrophy  is  characterized  by  increased  glucose
demand  and  decreased  FA  oxidation.  These  alterations  are
associated with increased glycolysis in cardiac hypertrophy [51
- 54]. Previous studies have shown that an increase in glucose
uptake and the activation of phosphofructokinase (PFK), play a
role  in  increasing  the  rate  of  glycolysis  in  rats  with
hypertrophied  hearts.  In  left  ventricular  hypertrophy  (LVH),
there is an increase in adenosine monophosphate (AMP) and
adenosine diphosphate (ADP), triggering AMPK, which in turn
increases glucose transport and PFK activation [54].

Dahl  salt-sensitive  rats  with  HF  and  preserved  ejection
fraction  showed  decreased  FA  metabolism  and  increased
glucose  metabolism.  Uncoupling  between  glycolysis  and
glucose oxidation, resulting from increased glycolysis, occurs
without changes in glucose oxidation; this results in an acidic
environment that hampers cardiac function [8]. The Warburg
effect is known to occur in cancer cells. These cells have high
proliferation  rates  and  exhibit  high  glycolysis  rates  in  the
presence  of  oxygen  [55,  56].  In  addition  to  cancer  cells,  the
Warburg  effect  may  occur  in  other  cells  with  high  energy
demand.  This  effect  has  been  demonstrated  in  cardiac
hypertrophy,  which  causes  HF.  Inhibition  of  anaerobic
glycolysis can reduce hypertrophy and increase the flexibility
of cardiac metabolism to maintain the need for cardiac output
to meet the high metabolic demand [57]. HF and hypertrophy
mouse models showed decreased myocardial glucose oxidation
levels. Metabolic changes are believed to increase the severity
of HF [30].

Waleed et al. developed a post-infarction mouse model and
revealed  an  imbalance  in  glucose  metabolism  and  increased
proton production, resulting in the deterioration and disruption
in  mechanical  left  ventricular  function  [14].  Systolic
dysfunction  and  glucose  oxidation  damage  in  HF  may  be
caused  by  mitochondrial  dysfunction,  decrease  in  the
expression of  the  genes  involved in  glucose  oxidation,  or  an
increase  in  the  expression  of  the  PDH  complex  [11,  58].
Increased  oxidative  stress  may  be  a  cause  of  mitochondrial
dysfunction  in  cardiac  hypertrophy,  HF,  and  AF.  Reactive
oxygen species (ROS) play a role in cardiac remodeling in the
stress  response  via  increased  mitochondrial  biogenesis,
cardiomyocyte  volume,  and  capillary  density  [59].  During
chronic stress, ATP demand increases in the heart, leading to
increased  activity  of  the  electron  transport  chain  in  the
mitochondria and ROS generation. This results in a shift in the
energy  metabolism  to  glycolysis,  even  in  the  conditions  of
adequate oxygen levels, as compensation for the high energy
demand.  This  could  be  the  underlying  mechanism  of  the
Warburg  effect  in  cardiovascular  diseases,  particularly  HF.



Role of Warburg Effect in Cardiovascular Diseases The Open Cardiovascular Medicine Journal, 2021, Volume 15   9

Fig. (1). Glucose metabolism in the heart. During glucose metabolism (yellow arrows), glucose enters the cells via the glucose transporters GLUT1
and GLUT4.  Glycolysis  begins  with  the  conversion of  glucose to  glucose-6-phosphate,  which is,  in  turn,  is  converted to  pyruvate  by pyruvate
dehydrogenase. Pyruvate either enters the tricarboxylic acid (TCA) cycle in the mitochondria to produce ATP via the electron transport chain or is
converted  to  lactate  by  lactate  dehydrogenase  (LDH).  In  addition  to  glycolysis,  glucose  undergoes  intermediate  glycolysis  via  the  hexosamine
biosynthetic  pathway  (HBP),  pentose  phosphate  pathway  (PPP),  and  polyol  pathway.  Circulating  fatty  acids  (FAs)  cross  the  cardiomyocyte
membrane (red arrows) via the transporters fatty acid translocase (FAT/CD36), plasma membrane fatty acid-binding protein (FABPpm), and fatty
acid transport protein (FATP). Fatty acyl-CoA enters the mitochondria via  carnitine palmitoyltransferase (CPT) I and CPT II and undergoes β-
oxidation. Ketones are also converted to acetyl-CoA (blue arrows) by succinyl-CoA: 3-oxoacid-CoA transferase (SCOT) and β-hydroxybutyrate
dehydrogenase 1 (BHD1).

Other  studies  have  shown  that  FA  oxidation  stimulation
and  oxidative  phosphorylation  improve  HF [11,  14,  60].  We
previously  reported  that  mice  with  CD36  genetic  deletions
showed  decreased  FA  uptake  and  increased  glycolysis  flux;
this,  in  turn,  increased  the  progression  from  compensated
hypertrophy  to  HF.  This  phenomenon  was  also  observed  in
mice models of heart pressure overload with a double knockout
of  FABP4  and  FABP5,  with  increased  glycolysis  and
decreased FA uptake, resulting in severe hypertrophy, fibrosis,
and cardiac dysfunction. Furthermore, the use of glucose was
demonstrated  not  only  for  catabolic  pathways  but  also  for
anabolic  pathways  to  synthesize  biomass  [61,  62].  CD36
increased the expression of Forkhead Box O1 and PDK4 via
the  activation  of  PPARδ/β  to  inhibit  glucose  oxidation  [63].
This could support the association between the Warburg effect
and cardiovascular diseases due to increased glycolysis, even
accompanied by glucose oxidation. The increase in glycolysis
in this study [61 - 63] may have involved the Warburg effect,
although  it  remains  unclear.  Further  research  and  clinical
studies  in  humans  are  needed.

Structural and electrical remodeling also occurs in AF [64].
In acute AF, contraction and electrical activity increase four- to
six-fold  compared  with  normal  atrial  conditions.  Tu  et  al.
reported the downregulation of FA metabolism in the atria of
permanent  AF  due  to  the  downregulation  of  the  enzymes
regulating  FA  oxidation  [65].  Tsuboi  et  al.  reported  that  the
deletion of mitochondrial DNA in patients with AF led to the

disruption  of  ATP  synthesis  [66].  Decreased  oxidation  of
pyruvate  and  FAs  increases  glycolysis  in  AF,  leading  to  the
upregulation of glycolytic enzymes, lactate production, and the
downregulation  of  the  PDH  complex  [25,  37].  Myocardial
fibrosis and metabolic stress are related to the Warburg effect
and play a role in the development of AF. An increase in PDK4
is associated with an increase in myocardial fibrosis.

The  Warburg  theory  suggests  an  ATP  production  shift
from  the  TCA  cycle  and  oxidative  phosphorylation  to
glycolysis  or  lactate  production,  even  in  the  presence  of
oxygen,  and  is  thus  termed  aerobic  glycolysis  [55,  67,  68].
Under normal conditions, most of the glucose taken up by cells
is metabolized via glycolysis to pyruvate, which then enters the
TCA cycle  and electron transport  chain  to  generate  ATP via
oxidative  phosphorylation  [69].  Studies  have  shown  that  the
increase  in  oxidative  phosphorylation  in  cancer  cells  can  be
achieved by inhibiting glycolysis. Activation of glycolysis in
the  proliferative  cells  supports  the  cells  to  grow  [15,  70].
Glycolysis  can  be  induced  by  hypoxia  via  activation  of
hypoxia-inducible transcription factor 1α (HIF-1α). HIF-1 is a
heterodimeric  transcription  factor  that  changes  hypoxic  gene
expression and consists of HIF-1α and HIF-1β subunits.  It  is
thought to be adaptive for cells exposed to an oxygen-deficient
environment.  PDK1  is  the  target  of  the  HIF-1α  gene,  which
increases PDK activation and leads to the inhibition of PDH,
which  allows  pyruvate  to  enter  the  mitochondria  to  perform
oxidative  phosphorylation.  PDK1  regulates  mitochondrial
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function in hypoxic states by inhibiting the entry of pyruvate
into the TCA cycle, indirectly inhibiting PDH [71 - 74].

In  a  monocrotaline-induced  model  of  pulmonary
hypertension,  the  glycolysis  rate  of  right  ventricular
hypertrophy (RVH) was increased compared with that of the
control group, and there was no increase in glucose oxidation.
An  increase  in  GLUT1  was  observed  as  a  compensatory
mechanism of low ATP levels. Decreased glucose oxidation is
thought to occur due to PDH phosphorylation [20]. Decreased
glucose  oxidation  rate  in  fawn-hooded  rats  with  pulmonary
hypertension and RVH occurs due to increased PDK4 levels.
Therefore,  inhibition  of  PDK  can  increase  PDH  activity  to
prevent HF [21]. Kato et al. reported metabolic remodeling in
compensated left ventricle hypertrophy and HF and showed an
increase in glycolysis, characterized by an increase in lactate
and  a  decrease  in  PDH  [11].  Studies  have  reported  that  an
increase in LDH, which converts pyruvate to lactate, results in
increased lactic efflux in the hypertrophied heart muscle [75].
PH alteration and increase in protons can impair the sensitivity
of  troponin  I  to  calcium,  which  interferes  with  cardiac
contractility [76]. The upregulation of glycolysis rates results
in  uncoupling  between  glycolysis  and  glucose  oxidation,
leading to an increase in proton and lactate production [77, 78].
This suggests that an increase in lactate levels is due to a higher
glycolysis rate compared with mitochondrial oxidation and that
increased PDK inhibits the activation of the PDH complex and
the  biosynthesis  of  the  precursors,  which  are  needed  to  be
required  for  the  development  of  hypertrophy  [23,  79].
Decreased oxidation of pyruvate and FAs increases glycolysis
in  AF,  leading  to  the  upregulation  of  glycolytic  enzymes,
lactate  production,  and  the  downregulation  of  the  PDH
complex.  The  Warburg  effect  increased  glucose  use  and
fibrosis  levels  in  a  canine  model  of  p-AF  cardiomyopathy,
which is characterized by the increased expression of PDK1,
PDK4,  LDHA,  and  lactic  acid  and  decreased  expression  of
isocitrate  dehydrogenase and PDH [80].  Increased glycolytic

enzymes  in  cardiovascular  diseases,  as  seen  in  cancer  cells,
indicate the involvement of the Warburg effect.

HIF-1α  plays  an  important  role  in  energy  changes  from
oxidative  phosphorylation  to  glycolysis.  HIF-1α  is  the  main
hallmark and regulator  of  the  Warburg effect  in  cancer.  It  is
upregulated under cardiac hypertrophy conditions [79, 81, 82].
Increased  HIF-1α  expression  in  AF  is  an  early  response  of
atrial cardiomyocytes. In AF models, there was a decrease in
PPARα/PGC1α activity that  was inhibited by HIF-1α,  which
caused a decrease in FA metabolism [81, 83]. HIF-1α plays a
role  in  metabolic  reprogramming  in  end-stage  HF.
Furthermore,  it  regulates  the  gene  expression  of  PDK1  and
LDHA,  which  play  a  role  in  reprogramming  glucose
metabolism  [84].  Interactions  between  HIF-1α  and  pyruvate
kinase M2 (PKM2) in the nucleus activate the transcription of
genes  involved  in  glycolysis,  such  as  GLUT  1,  LDHA,  and
PDK1 [85]. PKM2 is considered the hallmark of the Warburg
effect in cancer cells [86]. HIF-1α activates the conversion of
adult  pyruvate  kinase  M1  (PKM1)  to  fetal  PKM2.  PKM1  is
normally  expressed  continuously  in  normal  cells,  whereas
PKM2  is  widely  expressed  in  cancer  cells  [87].  Metabolic
changes that occur in heart diseases cause a metabolic switch
back to fetal metabolism, in which the glycolysis rate exceeds
that of oxidative phosphorylation [88, 89]. The fetal heart uses
glucose as the main energy source. A few days after birth, the
heart switches to using FA oxidation as its main energy source.
In  the  heart  of  a  newborn  rabbit,  approximately  44%  of  the
ATP was derived via  glycolysis;  however,  after  7 days,  only
approximately 7% of the ATP was produced via glycolysis [87,
90,  91]  In  cancer  cells,  HIF-1  suppresses  the  TCA cycle  via
PDK  activation  and  functions  to  maintain  ATP  and  ROS
production  [72].  The  increase  of  PDK  regulation  leads  to
reduced levels of active PDH via  PDH phosphorylation [73].
Suppression of HIF-1α prevents hypertrophy-induced cardiac
dysfunction [92]. The Warburg effect and HIF-1α are thought
to result in the metabolic shift to glycolysis in both cancer cells
and cardiovascular diseases (Table 1).

Table 1. Role of the Warburg effect in cardiovascular diseases.

No. Disease Model Event Reference
1 LVH Weanling male Wistar rats Glycolysis ↑

Lactate ↑
[54]

2 LVH
HF

Inbred male Dahl Salt-sensitive rats Glycolysis ↑↑
Lactate ↑

[11]

3 LVH Male Wistar rats PDH ↓
PDK ↑

[93]

4 HF Male C57BL/6 mice with coronary artery ligation or sham operation procedure Glycolysis ↑
Glucose oxidation ↑

Lactate ↑

[14]

5 HF Male Dahl salt-sensitive rats with induced HfpEF Glycolysis ↑
Glucose oxidation ↔

FA oxidation ↓
Lactate ↑
Proton ↑

[8]

6 LVH Mb transgenic mice with transverse aortic constriction surgery Glycolysis ↑
F-2,6-P2 ↑

[94]

7 RVH Adult male Sprague–Dawley rats injected monocrotaline Glycolysis ↑
Glucose oxidation ↔

PDH ↓
PDK ↑

[20]
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No. Disease Model Event Reference
8 RVH Fawn-hooded rats Glycolysis ↑

Glucose oxidation ↓
PDK ↑

-

9 Chronic cardiac
hypertrophy

Mouse transaortic-constriction Glycolysis ↑
p-PDH ↑

[95]

10 AF Beagle Canine model of paroxysmal atrial fibrillation Glycolysis ↑
LDHA↑
PDK1 ↑
PDK4 ↑

[80]

AF, atrial fibrillation; FA, fatty acid; HF, heart failure; F-2,6-P2, fructose 2,6-bisphosphate; HFpEF, heart failure with preserved ejection fraction; LVH, left ventricular
hypertrophy; PDH, pyruvate dehydrogenase; PDK, pyruvate dehydrogenase kinase; RVH, right ventricular hypertrophy

3.3.  Warburg  Effect:  Targeted  Treatment  in
Cardiovascular Diseases?

In  cardiac  hypertrophy,  cell  growth  and proliferation  are
accompanied  by  decreased  FA  β-oxidation,  which  is
characterized  by  changes  in  the  expression  of  enzymes
involved in glycolysis and FA β-oxidation [33]. In HF, ATP is
decreased to 30-40% compared with that in the normal heart
due  to  a  switch  to  the  use  of  glucose  as  the  primary  energy
source instead of FAs. In HF, a decrease in myocardial ATP up
to  60-70%  is  accompanied  by  a  decrease  in  mitochondrial
glucose oxidation, increased glycolysis, and decreased creatine
kinase activity [11, 30, 96]. Therefore, promoting the coupling
of glucose oxidation and glycolysis is one approach to treat HF
because it enhances oxidation [97]. Correcting cardiac function
via the reverse Warburg effect can be achieved by stimulating
glucose oxidation [8].

Dichloroacetate  (DCA)  can  induce  oxidative
phosphorylation  and  the  activation  of  the  PDH complex  and
has  been  widely  studied.  Inhibition  of  aerobic  glycolysis
increases cardiac metabolic flexibility and reduces hypertrophy
via PDH inhibition. In ischemia-reperfusion models, DCA has
a cardioprotective mechanism [98, 99]. In an MCT-RVF, RVH
leads  to  an  increase  in  PDK  activity.  The  administration  of
DCA, a pyruvate dehydrogenase kinase inhibitor, decreased the
expression of  PDK in MCT-RVF mice [20].  DCA decreased
LDHA and upregulated superoxide dismutase 2 [100]. In Dahl-
sensitive  rats,  the  use  of  DCA  treatment  prevented  the
progression  of  LVH  to  HF.  DCA  was  shown  to  improve
cardiac  function  and  survival  in  the  rat  model  [11].
Interestingly,  DCA  treatment  in  mice  with  hyperthyroidism
showed an increase in PDH activity and increased myocardial
flexibility and reduced hypertrophy [93]. Clinical data on the
use of DCA remains sparse. A clinical study of 10 patients with
HF (New York Heart Association class III and IV) infused with
DCA intravenously showed improved LV stroke volume and
myocardial  oxygen  consumption  [101].  The  effect  of  DCA
might inhibit the Warburg effect by improving the coupling of
glycolysis to glucose oxidation by inhibiting PDK to activate
PDH,  thereby  increasing  pyruvate  oxidation  and  mechanical
efficiency.

Increased  AMPK  activity  is  associated  with  cardiac
hypertrophy and HF. Targeting AMPK activity as a treatment
in  HF  models  improved  cardiac  function  and  reduced
ventricular remodeling [102, 103]. AMPK phosphorylation is
increased  in  patients  with  paroxysmal  AF  as  an  adaptive
response  to  metabolic  stress  in  AF  for  Ca2+  handling  and

contractility [57]. Furthermore, AMPK increased levels of FA
transport proteins FAT/CD36 and FABPpm [104]. In a mouse
AF  model,  AMPK  was  associated  with  an  increase  in
FAT/CD36,  leading  to  excess  uptake  of  FAs  and  decreased
expression of GLUT4 in the membrane. Therefore, AMPK has
cardioprotective functions and prevents the AF progression by
increasing FA oxidation compared with glucose oxidation [51,
105]. Some drugs, such as metformin, statins, and resveratrol,
activate  AMPK.  Metformin  increases  AMPK  activity  by
directly  increasing  its  phosphorylation  or  binding  to  AMPK
subunits,  thereby  increasing  the  heterotrimeric  complex.
Metformin indirectly changes the ratio of AMP or ADP to ATP
[106,  107].  In  animal  models,  metformin  phosphorylates
AMPK  and  increases  nitric  oxide  levels,  thereby  improving
cardiac  function  [108].  The  use  of  metformin  as  an  AMPK
activator  in  a  Beagle  dog  AF  model  showed  an  increase  in
AMPK,  PGC1α,  and  PPAR1α  activity,  and  a  decrease  in
HIF1α,  GLUT1,  PDK,  HK,  and  LDH.  Metformin  treatment
also revealed that an increase in PDH is the key to the Warburg
effect  [109].  A  clinical  study  has  shown  that  the  use  of
metformin reduces the mortality rate in ambulatory HF patients
with  diabetes  [110].  AMPK  activates  FA  metabolism  via
PGC1α/PPAR1α and inhibits HIF-1α to reverse the Warburg
effect [25]. Resveratrol is a natural polyphenol found in plants,
including  peanuts,  cranberries,  and  grapes.  It  has  a
cardioprotective effect  via  the  activation of  AMPK/sirtuin 1,
which  is  involved  in  signaling  and  modulating  cardiac
metabolism.  The beneficial  effects  of  resveratrol  in  HF have
been shown in ischemic and non-ischemic HF animal models
[111 - 113].

The activation of PPARα and PGC1α increases FA flux in
cells  as  well  as  increases  the activity  of  enzymes that  play a
role in FA β-oxidation [114]. Mice lacking PPARα were shown
to  have  increased  glycolysis  and  decreased  FA  oxidation,
characterized by a decrease in protein transport and in enzymes
playing  a  role  in  β-oxidation  (such  as  malonyl-CoA
decarboxylase,  which  inhibits  CPT  I)  [115].  In  mouse  HF
models,  treatment  with  fenofibrate,  a  PPARα  agonist,  led  to
increased  FA  metabolism  [116,  117]  as  well  as  the
upregulation of PDH, GLUT4, PPARα, PGC1α, and p-sirtuin 1
and  downregulation  of  PDK4  [118].  In  dogs  with  high-
frequency  left  ventricular  pacing,  fenofibrate  administration
prevented a decrease in FA metabolism and improved cardiac
function [119]. The reverse Warburg effect can be generated by
promoting the coupling of glycolysis and glucose oxidation and
can  be  achieved  by  enhancing  glucose  and  FA  oxidation.
Metabolic therapy by disrupting the Warburg effect represents
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a  potential  treatment  for  cardiovascular  diseases,  although
more  extensive  human  studies  are  warranted  to  demonstrate
this effect as well as the clinical implications of the Warburg
effect on cardiovascular diseases (Fig. 2).

3.4. Dietary and Exercise Modifications in Cardiovascular
Diseases

Behavioral  modifications,  such  as  a  healthy  lifestyle,
including healthy dietary patterns and appropriate exercise, are
important  strategies  recommended  for  the  prevention  of
cardiovascular disease [120]. In recent years, epigenetic studies
have  shown  that  environmental  factors,  including  diet  and
physical  exercise,  may  change  the  epigenome.

Meta-analyses  and  randomized  controlled  trials  have
shown  that  a  Mediterranean  diet  consisting  of  fruits,  grains,
vegetables,  nuts,  fish,  unsaturated  fats,  and  legumes  reduces
mortality  and  morbidity  in  patients  with  cardiovascular
diseases [121, 122]. This healthy diet pattern should be low in
trans  fats,  refined  grains,  red  and  processed  meat,  sugary
drinks, and added sugars [123]. Cohort studies have shown an
association between metabolite profiles and high adherence to
dietary recommendations proposed by the Alternative Healthy
Eating Index (AHEI) in patients with cardiovascular diseases
[124]. High levels of monounsaturated and saturated FAs are
associated  with  a  high  risk  of  cardiovascular  diseases.
Furthermore,  a  high  ratio  of  omega-3  polyunsaturated  fatty
acids (PUFAs), such as docosahexaenoic acid, to total FAs is
associated with a reduced risk of cardiovascular diseases [124].
A  hereditary  cardiomyopathy  model  demonstrated  that

omega-3  PUFAs  can  reactivate  the  expression  of  genes
damaged  in  cardiomyocytes  and  also  prevent  plasma
membrane  degradation,  which  maintains  signal  transmission
from the membrane surface to the nucleus [125]. Nutrition can
modulate  myocardial  genes  by  activating  the  transcription
factor  PPARα  [126,  127].  A  population-based  prospective
cohort study has found that dietary intake of different PUFAs
alters  the  association  between  genetic  variation  in  fatty  acid
desaturase  and  high-density  lipoprotein  and  low-density
lipoprotein  (LDL)  [128].  Reduced  risk  of  cardiovascular
diseases is associated with the intake of polyphenol-rich diets
related to DNA methylation. Polyphenols are present in fruits
and vegetables, including cocoa and green tea. In vitro studies
have  shown  that  cocoa  extract  can  inhibit  the  expression  of
genes  encoding  DNA  methyltransferases  and
methylenetetrahydrofolate  reductase,  which  are  found  in
several disease conditions, including heart diseases [129, 130].
Cocoa  polyphenol  is  cardioprotective  and  is  associated  with
decreased  LDL  levels.  Decreased  LDL  levels  can  lead  to  a
reduced  risk  of  atherosclerosis  leading  to  cardiovascular
disease  [131,  132].  Dietary  folic  acid  and  vitamin  B  may
reduce the risk of cardiovascular disease via the methylation of
homocysteine  to  methionine,  and  folic  acid  deficiency  in-
creases  cardiovascular  diseases  via  DNA  methylation  [133].

Mouse model studies have shown increased expression of
regulators  of  lipid  metabolism,  such  as  CPT  I,  PPARα,  and
sterol  regulatory  element-binding  protein  1c,  and  the  up-
regulation  of  CD36  gene  expression  [134,  135].  Dietary
modifications  and  appropriate  exercise  can  contribute  to
genetic changes in cardiovascular metabolism via epigenetics.

Fig. (2). Treatment targeting the Warburg effect in cardiovascular diseases. Agents that activate AMPK, such as metformin and resveratrol, inhibit
hypoxia-inducible  transcription  factor  1α  (HIF1α),  CD36/FAT,  and  acetyl-CoA  carboxylase  (ACC).  Other  drugs,  such  as  fenofibrate  and
dichloroacetate,  inhibit  the  phosphorylation  of  pyruvate  dehydrogenase  (p-PDH)  via  the  inhibition  of  pyruvate  dehydrogenase  (PDK).
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CONCLUSION

The  Warburg  effect  is  an  energy  shift  in  glucose
metabolism  from  oxidative  phosphorylation  to  aerobic
glycolysis  that  occurs  in  cancer  as  well  as  other  non-cancer
conditions,  including  cardiovascular  diseases.  The  Warburg
effect may also occur in highly proliferative cells involved in
cardiovascular diseases such as cardiac hypertrophy, HF, and
AF.  The  increased  activity  of  glycolytic  enzymes  in
cardiovascular diseases, as observed in cancer cells, indicates
the involvement of the Warburg effect. The mechanism of the
Warburg  effect  in  the  heart  is  not  completely  understood,
although HIF-1α is thought to play a role in its regulation. The
Warburg  effect  can  be  used  as  a  therapeutic  target  for
improving heart  conditions  by inhibiting the  shift  of  glucose
oxidation  to  aerobic  glycolysis.  This  can  be  achieved  by
increasing  glucose  oxidation  via  glycolysis  inhibitors  and
increasing FA oxidation. Diet and exercise can also be used to
prevent  cardiovascular  diseases.  Further  clinical  studies  are
warranted to determine the involvement of the Warburg effect
in  cardiovascular  diseases,  identify  more  therapeutic  targets,
and assess the effect  of epigenetics on the Warburg effect  in
cardiovascular diseases.
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